Thursday, October 8, 2020

Comparing Single and Multiple KNife Edge Diffraction with Epstein-Peterson Method

 







%======= SURAJ BASTOLA ========================%


%========== Assuming two obstacles with one obstacle loss equal to 1/3 of another Obstacle Loss ==========

clc;

u=-4:0.001:4;

for (i=1:length(u))

if (u(i)<=-1)

    f1(i) = 0;   

elseif(u(i)<=0)

    f1(i) = 0.5-0.62*u(i);  

elseif(u(i)<=1)

    f1(i) = 0.5*exp(-0.95*u(i));   

elseif(u(i)<=2.4)

    f1(i) = 0.4-(sqrt(0.1184-(0.38-0.1*u(i))^2));       

else

    f1(i) = (0.225079)./u(i);     

end

end

% =========== Single Knife-edge Diffraction Loss==============

L1 = 20*log10(abs(f1)); 

disp(L1);

subplot(2,1,1)

plot(u,L1,'g')

grid on

title('Single Knife-Edge Diffraction')

% ================= Multiple Knife Edge Diffraction with Epstein-Peterson Method======================

nobstac = 2;

Lsum = L1+(L1/3);

L2 = (Lsum)+(nobstac*3.9); 

disp(L2);

subplot(2,1,2)

plot(u,L2,'r')

grid on

title('Multiple Knife Edge Diffraction')

xlabel('Fresnel Diffraction Parameter')

ylabel('Diffraction Loss (dB)')



No comments:

Post a Comment

CHECKING WHETHER THE SYSTEM IS STABLE OR NOT

  % SURAJ BASTOLA % % ==========CHECKING WHETHER SYSTEM IS STABLE OR NOT ================== % H(z) = (2z+0.5)/(z^2+0.5z-1) b = [2 0.5]; a=[1...