Wednesday, October 7, 2020

ESTIMATING MULTIPLE DIFFRACTION LOSS WITH EPSTEIN-PETERSON AND FOOSE CORECTION

 % =================== SURAJ BASTOLA% ===========

% ============== Calculating Diffraction Loss ==============

clc;

clear all;

close all;

d1 = 1000;

d2 = 3480;

d3 = 1830;

d4 = 2650;

d5 = 3280;

d6 = 1200;

c = 3E8;

f = 8E8;

l = c/f;

fprintf('Wavelength = %d\n',l);

h1 = sqrt(l*d1*d2/(d1+d2));

h2 = sqrt(l*d3*d4/(d3+d4));

h3 = sqrt(l*d5*d6/(d5+d6));

fprintf('Height of knife edge above LOS of knife edge = %d %d %d \n',h1,h2,h3);

% =========== Obstacle 1 ==================

v1 = h1*(sqrt(2*(d1+d2)/(l*d1*d2)));

fprintf('First Fresnel-Kirchoff value = %d\n',v1);

if (v1<=-1)

    f1 = 0;   

elseif(v1<=0)

    f1 = 0.5-0.62*v1;  

elseif(v1<=1)

    f1 = 0.5*exp(-0.95*v1);   

elseif(v1<=2.4)

    f1 = 0.4-(sqrt(0.1184-(0.38-0.1*v1)^2));   % It is our desired equation as v = 1.414214   

else

    f1 = (0.225079)./v1;        

end

fprintf('Diffraction Loss =%d/n',f1); % Diffraction Loss

y1 = (abs(f1))^2;

G1 = 10* log10(y1); % Diffraction Loss in dB

fprintf('Total Diffraction Loss for X = %d\n',G1);

%======================Obstacle 2 =====================================

v2 = h2*(sqrt(2*(d3+d4)/(l*d3*d4)));

fprintf('First Fresnel-Kirchoff value = %d\n',v2);

%%%%%% Calculating Diffraction LOss in dB %%%%%%%%%%

if (v2<=-1)

    f2 = 0;   

elseif(v2<=0)

    f2 = 0.5-0.62*v2;  

elseif(v2<=1)

    f2 = 0.5*exp(-0.95*v2);   

elseif(v2<=2.4)

    f2 = 0.4-(sqrt(0.1184-(0.38-0.1*v2)^2));   % It is our desired equation as v = 1.414214   

else

    f2 = (0.225079)./v2;        

end

fprintf('Diffraction Loss =%d/n',f1); % Diffraction Loss

y2 = (abs(f2))^2;

G2 = 10* log10(y2); % Diffraction Loss in dB

fprintf('Total Diffraction Loss for X = %d\n',G2);

%======================Obstacle 3 =====================================

v3 = h3*(sqrt(2*(d5+d6)/(l*d5*d6)));

fprintf('First Fresnel-Kirchoff value = %d\n',v3);

%%%%%% Calculating Diffraction LOss in dB %%%%%%%%%%

if (v3<=-1)

    f3 = 0;   

elseif(v3<=0)

    f3 = 0.5-0.62*v3;  

elseif(v3<=1)

    f3 = 0.5*exp(-0.95*v3);   

elseif(v3<=2.4)

    f3 = 0.4-(sqrt(0.1184-(0.38-0.1*v3)^2));   % It is our desired equation as v = 1.414214   

else

    f3 = (0.225079)./v3;        

end

fprintf('Diffraction Loss =%d/n',f3); % Diffraction Loss

y3 = (abs(f3))^2;

G3 = 10* log10(y3); % Diffraction Loss in dB

fprintf('Total Diffraction Loss for X = %d\n',G3);

%======================Epstein Peterson Method with Foose Correction=====================================

nobst = 3;

L = G1+G2+G3+(nobst*3.91);

fprintf("Total diffraction Loss is %d\n", L);

No comments:

Post a Comment

CHECKING WHETHER THE SYSTEM IS STABLE OR NOT

  % SURAJ BASTOLA % % ==========CHECKING WHETHER SYSTEM IS STABLE OR NOT ================== % H(z) = (2z+0.5)/(z^2+0.5z-1) b = [2 0.5]; a=[1...